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Outline

• Backgrounds

• Local smooth adaptive filtering (LSAF) for

– detrending
– denoising

• Detecting chaos from noisy time series by SDLE
– low- and high-dimensional chaos
– intermittent chaos

• Quantifying predictability by pseudo-ensemble approach

• Example application: sunspot & river runoff dynamics

• Future perspectives
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Backgrounds and motivational questions

• Predictability of dynamical systems is an issue of enormous
theoretical and practical importance in many disciplines of science
and engineering.

• The issue is especially challenging in geosciences, since

– Geophysical processes often contain complicated trends

– Measurement data typically are very noisy

– Often a mathematical model is not available for performing
ensemble forecasting

• Question: Can we quantify the intrinsic predictability of a dynamical
process using only a scalar time series?

• Challenges: need effective detrending/denoising algorithms to clean
up the data, find the best model for the process, then do prediction
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Detrending based on empirical mode decomposition

• Wu, Huang, et. al. (PNAS 2007):

systematic, iterative method; among the best

• Basic idea:

– Find local maxima, connect them by a cubic spline line; do the
same for the local minima, and take the mean of the two envelopes

– Subtract the mean from the data, and repeat the procedure forthe

remaining data

• Problems:

– Stoppage criterion is somewhat subjective

– The decomposition is not unique and is sensitive to noise

– Cannot deal with chaotic signals

– Interpretation is difficult for random fractal signals
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Detrending using local methods: Challenges

• Segmentation and fitting causes jumps and discontinuities around the
boundaries, thus severely distort the high-frequency components of
the original signal
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Local smooth adaptive filtering (LSAF): algorithm

• Partition a time series into segments (or windows) of length2n+1
points, where neighboring segments overlap byn+1 points

• For each segment, fit a best polynomial of orderK

• Denote the fitted polynomial for thei-th and(i +1)-th segments by
y(i)(l1), y(i+1)(l2), l1, l2 = 1, · · · ,2n+1, respectively.

• Define the trend for the overlapped region as

y(c)(l) =
(

1−
l −1

n

)

y(i)(l +n)+
l −1

n
y(i+1)(l), l = 1,2, · · · ,n+1

• The trend is smooth at the non-boundary points, and has at least the
right- or left-derivative at the boundary points

• The parameters may be determined by requiring that the variance of
the detrended data no longer decreases significantly whenK is
further increased and/or 2n+1 is further decreased
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Determining trends in the yearly GSTA data

• With these window sizes, our results are very similar to those of Wu

et al;

• By adjusting window sizes, residual noise can be made even smaller
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Determining trends in the monthly GSTA data

• The global warming trend is obvious

• There also exist local cooling spans
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Atlantic Multidecadal Oscillation (AMO)
(http://www.cdc.noaa.gov/data/climateindices/List)
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• AMO: calculated from the

Kalplan SST (black & blue:

unsmoothed and smoothed

(window size 121 months)

data, Enfield et al. GRL

2001)

• Green & red: adaptive

trends with window sizes

121 and 241 months, re-

spectively; smoother than

the blue curve
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Denoising

• Chaotic Lorenz ’63 model:

ẋ = −10(x−y)+D1η1(t),

ẏ = −xz+28x−y+D2η2(t),

ż= xy− 8
3z+D3η3(t),

(1)

• Measurement noise:x(t)+n(t); RMSE=
√

1
N ∑N

i=1[x(i)− x̂(i)]2

• Dynamical noise: noise is in the equations of the system (Di 6= 0);

RMSEcannot be defined; effectiveness of denoising can be evaluated

through recovery of chaotic signatures

• Experimental data: both measurement and dynamical noise may

exist;RMSEcannot be defined
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LSAF of chaotic Lorenz data: SNR = 13.89 dB
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(a) Clean and noisy data
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(b) Chaos: projective filtering
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(c) Adatptive denoising
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(d) Wavelet denoisinig
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LSAF of chaotic Lorenz data: performance

• LSAF can reduce both measurement and dynamical noise (the latter follows

Cauchy distribution); more effective than linear filters aswell as chaos and

wavelet based approaches (and therefore, is the most effective)
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Introduction to chaotic dynamics:
The concept of phase space & transformation

dX1

dt
= f1(X1,X2),

dX2

dt
= f2(X1,X2)

(X1(0),X2(0)) 7−→ (X1(t),X2(t)) = T(t)(X1(0),X2(0))

X1(t)

t
to t1 t2

X2(t)

t X1

X2

to
t1

t2
to

t1

t2

t
to t1 t2
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An example: phase plane of the equation̈x = −x
(Rewrite as: ˙x = y, ẏ = −x)

x ’  =  y  

y ’  =  −x

Erase Hide Vectors I . C .  G r i d Endpoints P r i n t
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The action of flow: Transformation

• Example: Sir D’Arcy Thompson’s “Growth and form”—Fish
transformation (simple plane transformations can bring two different

types of fish together: different fishes have the same origin)

• Chaotic transformation: the head & tail of a fish get mixed up

• In cartoon pictures, face gets badly twisted

• Dust swept off the sky
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Ensemble forecasting

Kleeman (2002): Different colors show

the ensemble behavior at different times

• Choose a number of ini-

tial conditions

• Form neighborhoods of

small sizes around the

chosen initial condi-

tions as ensembles

• Monitor the evolution

of the ensembles with

time

• Assess information loss

• Critical observation:

Information loss
depends on the size of

ensembles
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Dynamical predictability: Major research efforts
• Dynamical approach: construct suitable forecast ensembles by

– generating Lyapunov and bred vectors (Toth and Kalnay, 1992, 1993,

1997, Kalnay 2003)

– generating singular vectors (Palmer et al. 1993, Reynolds and Palmer

1998),

– sampling the fastest growing directions of the phase space (Ehrendorfer

and Tribbia 1997)

– examining the dependence of prediction efficiency on ensemble size

(Buizza and Palmer 1998)

• Statistical approach: quantify the prediction utility by

– Shannon entropy (Carnevale and Holloway 1982, Schneider and Griffies

1999, Leung and North 1990)

– relative entropy (Roulston and Smith 2002, Kleeman 2002; Kleeman et

al. 2002; Majda et al. 2002; Cai et al. 2004; Kleeman and Majda2005;

Abramov et al. 2005, Haven et al. 2005)

17



'

&

$

%

Dynamical predictability: Motivational questions

• For chaotic systems, is the decay rate of relative entropy related to
the Kolmogorov entropy?

• What are the connections between

– different information theoretic approaches?
– dynamical and statistical approaches?

• Currently, with simple models, one would choose as many ensembles as possible, with
each ensemble containing a large number of members

• When the forecast models become increasingly complicated,however, one would only

be able to afford a small number of ensembles, each with limited number of members,

thus sacrificing estimation accuracy of the forecast errors

• From a single copy of scalar dataset or trajectory, can we get
information similar to what can be obtained from a large number of
ensembles?

• Positive answers imply enormous reductions in computational complexities and data

storage and tremendous improvements in the estimation accuracy of forecasts
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Quantification of information flow in a dynamical system

• Entropy characterizes the rate of creation of information in a system

• Covering a phase space with boxes of sizeε, whereε → 0. Let pi be

the probability that boxi is visited by the trajectory andI0 be the

initial entropy. We have (Atmanspacher and Scheingraber 1987)

I(ε, t) = −∑ pi ln pi = I0 +Kt,

whereK is the Kolmogorov-Sinai (K-S) entropy

• For deterministic chaotic systems, due to exponential divergence, the

number of phase space regions available to the system after atimeT

is N ∝ e(∑λ+)T , whereλ+ are positive Lyapunov exponents.

Therefore,I(T) = −∑N
i=1 pi(T) ln pi(T) = (∑λ+)T, or K = ∑λ+

• K = 0 and∞ for deterministic regular & random systems
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The decay of the relative entropy in ensemble forecasting

• Relative entropy
R= ∑

i
pi ln

( pi

qi

)

{pi}: probabilities associated with the forecast ensembles;{qi}: equilibrium or

climatological distribution of the ergodic system (also called the natural measure)

• We have proven that when the ensembles are chosen to represent the

natural measure, and that the initial period for the ensembles to

evolve onto themost unstabledirection is short enough, then

R(t) = Imax−
Z t

0
h(εt)dt

– Same Equation holds for the decay of the Shannon entropy

• For chaotic systems, for a considerable range of finite scaleε,

h(εt) ≈ const, therefore, R(t) = Imax−Kt
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How to compute
R t

0 h(εt)dt

• Need to know functional form ofh(εt)

• Also need to know howεt grows witht

• Rich theoretical results forh(εt) exist (Gaspard & Wang 1993)
– For deterministic chaos, whenεt → 0, h(εt) ∼ K
– For independent noise,h(εt) ∼−DI lnεt , whereDI is the

information dimension

– For 1/ f 2H+1 processes,h(εt) ∼ ε−1/H
t , where 0< H < 1 is the

Hurst parameter —depending on whetherH is smaller than, equal to,

or larger than 1/2, the process is said to have anti-persistent, short-range,

or persistent long-range correlations

— H = 1/3 for Kolmogorov’s−5/3 turbulence energy spectrum

• Numerically, it is difficult to calculateh(εt) accurately

• Can inferh(εt) from the scale-dependent Lyapunov exponent
(SDLE) λ(εt); also can obtainεt from λ(εt)
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Characterizing chaos by scale-dependent Lyapunov exponent (SDLE)
(Gao et al. Phys. Rev. E, 2006; Wiley book, 2007, Chaos, 2009)

• Consider an ensemble of trajectories inphase space

• Denote the initial separation between two nearby trajectories byε0,
and theiraverage separationat timet andt +∆t by εt andεt+∆t ,
respectively

• Being defined in an average sense,εt andεt+∆t can be readily
computed from any processes, even if they are non-differentiable

• When∆t → 0, SDLEλ(εt) is defined by

εt+∆t = εte
λ(εt )∆t or λ(εt) =

lnεt+∆t − lnεt

∆t

• Equivalently, we have a differential equation forεt ,

dεt

dt
= λ(εt)εt
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SDLE λ(ε) for chaos, noisy chaos, & noise-induced chaos

• Chaos:λ(ε) ≈ const(largest positive Lyapunov exponent)

• Noisy chaos & noise-induced chaos:λ(ε) ∼−γ lnε on small scales

• (i) Stochastic Lorenz (’63) system
(ii) Noisy logistic map
xn+1 = µxn(1−xn)+Pn,0 < xn < 1,µ= 3.74,σPn

= 0.002
—without noise, motion is periodic — Noise-induced chaos
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Power-law scaling ofλ(ε) for 1/ f 2H+1 processes

Can proveλ(ε) ∼ ε−1/H

For ON/OFF intermittency,H = (3−µ)/2
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Detecting intermittent chaos
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• Intermittent chaos: regular

and chaotic motions co-exist;

chaotic phase can be much

shorter than regular phase

• Very difficult to characterize

• Existing methods cannot detect

such motions from noisy time

series

• SDLE easily works, due to scale

separation property

• Example: logistic map

xn+1 = axn(1−xn), a = 3.8284
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Physical significance of the SDLE

• 1/λ(ε) amounts to the error doubling time

— larger doubling time means longer prediction time scale

• The first estimate of the doubling time was 5 days, given by the

Mintz-Arakawa two-layer model (Charney et al. 1966)

• With greater computational power and model complexity, onewould

expect doubling time to increase; however, the estimate of the

doubling time has been decreasing

• A recent estimate (Simmons & Hollingsworth, 2002):< 2 days

• Lorenz suggests that the major factor for the decrease of thedoubling

time has been the decrease in spatial resolution

• λ(ε) ∼− lnε andλ(ε) ∼ ε−1/H are more relevant to reality
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The pseudo-ensemble technique

Essence: ensemble forecasting equivalent based on a time series

• Define a sequence of “shells” indexed ask:

εk ≤ ‖Vi −Vj‖ ≤ εk +∆εk, |i − j| > w,

whereVi ,Vj are vectors sampled from a single trajectory, or vectors

reconstructed from a time seriesx1,x2, · · · using Taken embedding theorem,

Vi = [xi ,xi+L, · · · ,xi+(m−1)L],

wherem andL are embedding dimension and delay time, respectively

• Computation of the SDLE (Gao et al. 2006)

λ(εt) =
〈

ln‖Vi+t+∆t −Vj+t+∆t‖− ln‖Vi+t −Vj+t‖
〉

/∆t,

where the angle brackets denote average within a shell

• Can prove
R t

0 λ(εt)dt = Λ(t) =
〈

ln‖Vi+t −Vj+t‖− ln‖Vi −Vj‖
〉

= lnεt − lnε0

Λ(t): Time-dependent exponent (TDE) curves (Gao & Zheng, 93,94)
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Prediction in the Lorenz ’63 system
• Direct calculation of the relative entropy: partitioned the attractor into

512×512×512= 227 boxes; used 108 points sampled atτ = 0.06; constructed 100
ensembles each having 106 members

• 4 TDE curves were computed using an ergodic solution of 105 points

• Fig.(b) takes a few minutes while (a) takes∼ 100 hours to compute

• Reduction in computational complexity and data storage by
more than 4 orders of magnitude
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Predicting large scale motions in the Lorenz (’63) system

Characteristic scaleεt : λ(εt) ≈ 0
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Prediction in the Lorenz ’96 model

• The model is supposed to represent a 1-D atmosphere;F is a positive constant,t is
(non-dimensional) time, andXn are values for some scalar atmospheric quantity onN
equally spaced latitude circle

dXn/dt = −Xn−2Xn−1 +Xn−1Xn+1−Xn +F, n = 1,2, · · · ,N

• N = 40,F = 8 are chosen here; there are 13 positive Lyapunov exponents,D ≈ 27.1

• Can extrapolate to small scales to recover information not resolved by a single dataset
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Dynamical origin of the sunspot number 11 year cycle

• After the 11 year cycle is filtered out, FFT can no longer reveals the

11 year cycle from the detrended data

• FFT of SDLE’s characteristic scale of the detrended data still can

– Sunspot minima and maxima dynamically are different
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Predictability of sunspot numbers
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Example application: Umpqua river runoff dynamics

• First time definitive evidence of chaos in river runoff dynamics
• The error growth curves set the limit for prediction
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Quantifying predictability in medium- and high-dimensional
dynamical systems

• Infinite-dimensional noisy dynamical systems: on small scales
λ(ε) ∼− lnε; it can be resolved by around 104 points

• Infinite-dimensional 1/ f 2H+1 processes:λ(ε) ∼ ε−1/H ; it can also be
resolved by around 104 points

• Other infinite-dimensional stochastic processes (including Levy
processes, stochastic oscillations): behavior ofλ(ε) is well-defined
when there are about 104 points

• Medium-dimensional dynamical systems (such as Lorenz ’96
model):Here arises a major challenge!— a given dataset defines
εmin. What’s the behavior ofλ(ε) whenε < εmin?
— Extrapolate the scaling laws forλ(ε) to those scales!

• Spatiotemporal systems: work with the coefficient time series of
EOFs
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Parameterization of error growth curves

• For ergodic systems (chaos, noisy chaos, & stochastic systems)

– If λ(εt) = λ1, thenεt = ε0eλ1t

– If λ(εt) = −γ lnε, then lnε = lnε0e−γ(t−t0), γ = −D lnε0/I(ε0)

whereε0 is the scale att0, D is the fractal dimension, andI(ε0) is
the initial amount of information

• For non-ergodic systems (1/ f 2H+1 & Levy processes)

– For 1/ f 2H+1, λ(ε) ∼ ε−1/H , ε ∼ tH

– Similarly for Levy processes

• For multiscale systems, there may exist different scale ranges whereλ(εt ) has

well-defined behavior; useε(t) for each scale range correspondingly

• Lorenz (1982):dε
dt = αε−βε2, which amounts toλ(ε) = α−βε

Simmons & Hollingsworth (2002):dε
dt = γ+αε−βε2,

which amounts toλ(ε) = γ
ε +α−βε
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Model error and predictability

• Mode reduction is a hot topic

• Example: Lorenz ’96 model

– 1-layer modelfor a 1-D atmosphere;F is a positive constant,t is

(non-dimensional) time, andXn are values for some scalar atmospheric quantity

onN equally spaced latitude circle

dXn/dt = −Xn−2Xn−1 +Xn−1Xn+1−Xn +F, n = 1,2, · · · ,N

– 2-layer model:

dXn/dt = −Xn−2Xn−1 +Xn−1Xn+1−Xn +F − (hc/b)
J

∑
j=1

Yj,n

dYj,n/dt = −cbYj+1,n(Yj+2,n−Yj−1,n)−cYj,n +(hc/b)Xn

– Stochastic 1-layer model

• SDLE can be used to quantify the differences among them
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Summary

• We have developed a versatile adaptive algorithm for detrending and

denoising, which is more effective than existing methods

• We have shown that SDLE can characterize all known models of

complex time series, and even detect high-dimensional and

intermittent chaos

• The pseudo-ensemble approach can effectively quantify the

predictability of a dynamical system using only time seriesdata

• Application domains are vast, including geophysical sciences and

biomedical engineering

• For more backgrounds, see

Gao et al., 2007:Multiscale Analysis of Complex Time Series —
Integration of Chaos and Random Fractal Theory, and Beyond,
Wiley Interscience

37



'

&

$

%

Acknowledgments

• This work is partially supported by NSF grants CMMI-0825311and

CMMI-0826119

• Mr. Hussain Sultan and Ms. Lei Yang of Univ of Florida contributed

to the denoising work; Drs. Yinhe Cao and Jing Ai contributedto

part of the prediction work

• Thanks for your time and interests

• Looking for collaborations

38


